Contents

Overview ... 3
Course Components ... 4
Course Implementation Models ... 7
Algebra 1A Overview .. 8
Algebra 1A Curriculum Contents and Pacing Guide ... 9
 Unit 1: Relationships Between Quantities and Reasoning with Equations 9
 Unit 2: Linear and Exponential Relationships .. 12
Overview

PLATO Courses are developed to give the instructor a variety of ways to engage different learning modalities and to give the student an opportunity to experience a range of standards and objectives to ensure academic success.

PLATO Courses integrate PLATO online curriculum, electronic learning activities, and supporting interactive activities. An array of assessment tools allows the instructor to correctly place students at the appropriate learning level, to evaluate strengths and needs, to create individualized learning goals, and to determine proficiency. Reports assist the student in understanding where he or she needs to focus to be academically successful as measured against objectives. Guidelines and tools are provided to track student progress and to determine a final course grade.

PLATO Courses give the instructor control over the instructional choices for individual students as well as for the classroom. The instructor may use all of the components as sequenced or select specific activities to support and enhance instruction. PLATO Courses can be used in a variety of ways to increase student achievement.
Course Components

Learning Activities
Three types of learning activities form the building blocks of active learning for this course: lessons, unit activities, and online discussions.

- **Lessons.** Each lesson in this course contains one or more learning components. All contain an interactive tutorial. Some include a Lesson Activity, as well.
 - **Tutorials.** Tutorials provide direct instruction and interactive checks of understanding. Practice interactions include drag-and-drop matching, multiple-choice questions, and fill-in-the-blank questions. Tutorials also often include links to informational websites, interactions, and videos, which enable students to broaden their understanding.
 - **Lesson Activities.** Lesson Activities are typically based on multipart problems. These problem-based activities allow students to develop new learning in a constructivist way or to apply learning from the tutorial in a significant way. Lesson Activities are designed to be an authentic learning and assessment tool.

- **Unit Activities.** The unit activity at the end of each unit aims to deepen understanding of some key unit objectives and tie them together or tie them to other course concepts. Unit activities are similar to Lesson Activities, but are intended to combine and leverage concepts developed throughout the unit.

- **Online Discussions.** Online discussion with instructors and other students is a key activity, based on 21st-century skills, that allows for higher-order thinking about terminal objectives. An online threaded discussion mirrors the educational experience of a classroom discussion. Instructors can initiate a discussion by asking a complex, open-ended question. Students can engage in the discussion by responding both to the question and to the thoughts of others. Each unit in a course has one predefined discussion topic; instructors may include additional discussion topics. A rubric for grading discussion responses is included in this guide.

Learning Aids
Learning aids assist students within the courseware activities. In this course, these learning aids include the following:

- **Scientific Calculator (Tutorials).** The Scientific Calculator is available in case students do not have access to a handheld calculator.

- **Data Tools (Probability and Statistics Lessons only).** Online data tools allow students to plot data using four widely applicable tools: histograms, box plots, scatter plots, and stem and leaf plots. Students are also provided with a document providing specific instructions on how to use these tools.

Assessment and Testing
Best practices in assessment and testing call for a variety of activities to evaluate student learning. Multiple data points present a more accurate evaluation of student strengths and needs. These tools include both objective and authentic learning tools.
• **Objective Assessments.** There is a specific learning objective associated with each lesson. Each lesson objective is assessed through objective assessments at three different points during the course: at the end of the specific lesson, at the end of the unit, and at the end of the semester. In addition, pretests based on these objectives are available at the beginning of each unit, if desired by the teacher.

 o **Mastery tests** at the end of each lesson provide the instructor and the student with clear indicators of areas of strength and weakness. These multiple-choice tests are taken online.

 o **Unit pretests** are optional assessments, typically designed for credit recovery use. If a student shows mastery of a lesson’s objective (80% proficiency), the student may be automatically exempted from that lesson in the upcoming unit. Courses for first-time credit typically do not employ unit pretests. The tests are multiple-choice and are provided online.

 o **Unit posttests** help instructors track how well students have mastered the unit’s content. The tests are multiple-choice and are provided online.

 o **End-of-semester tests** assess the major objectives covered in the course. By combining the unit pretest and unit posttest information with the end-of-semester test results, the instructor will gain a clear picture of student progress. The tests are multiple-choice and are provided online.

• **Authentic Learning Assessment.** Of the assessment tools available in this course, three are designed specifically to address higher-level thinking skills and operations: Lesson Activities, unit activities, and discussions. These authentic learning activities allow students to develop deep understanding and provide data for the teacher to assess knowledge development. These three types of activities are described in the Learning Activities section above. The following comments address their use for assessment.

 o **Lesson Activities** immerse the student into one or more in-depth problems that center on developing a deep understanding of the learning objective. They also provide a tool for assessing identified Common Core mathematical practices, inquiry skills, STEM skills, and 21st century skills. All Lesson Activities in this course are self-checked by the student; however, it is possible to submit this work for teacher grading on paper, by email, or by creating a drop box activity in the course learning path.

 o **Unit Activities** are similar to Lesson Activities, but more time intensive and require a more integrative understanding of the unit’s objectives. They also provide a tool for assessing identified Common Core mathematical practices, inquiry skills, STEM skills, and 21st century skills. Unit activities are teacher graded and submitted through the drop box. These activities allow the instructor to score work on a scale of 0 to 100. A 10-point suggested rubric is provided to both the student and the teacher for this purpose.

 o **Discussions** encourage students to reflect on concepts, articulate their thoughts, and respond to the views of others. Thus, discussions help teachers assess students’ critical-thinking skills, communication skills, and overall facility with the unit concepts. Each unit in this course has one predefined discussion topic. Instructors
can customize the course, however, to include additional discussion topics. Online discussions may use whatever rubric the instructor sets. A suggested rubric is provided here for reference.

Online Discussion Rubric

<table>
<thead>
<tr>
<th>Relevance of Response</th>
<th>D/F 0–69 Below Expectations</th>
<th>C 70–79 Basic</th>
<th>B 80–89 Proficient</th>
<th>A 90–100 Outstanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>The responses do not relate to the discussion topic or are inappropriate or irrelevant.</td>
<td>Some responses are not on topic or are too brief or low level. Responses may be of little value (e.g., yes or no answers).</td>
<td>The responses are typically related to the topic and initiate further discussion.</td>
<td>The responses are consistently on topic and bring insight into the discussion, which initiates additional responses.</td>
<td></td>
</tr>
</tbody>
</table>

| Content of Response | Ideas are not presented in a coherent or logical manner. There are many grammar or spelling errors. | Presentation of ideas is unclear, with little evidence to back up ideas. There are grammar or spelling errors. | Ideas are presented coherently, although there is some lack of connection to the topic. There are few grammar or spelling errors. | Ideas are expressed clearly, with an obvious connection to the topic. There are rare instances of grammar or spelling errors. |

| Participation | The student does not make any effort to participate in the discussion. | The student participates in some discussions but not on a regular basis. | The student participates in most discussions on a regular basis but may require some prompting to post. | The student consistently participates in discussions on a regular basis. |
Course Implementation Models

PLATO Courses give instructors the flexibility to define implementation approaches that address a variety of learning needs. Instructors can configure the courses to allow individual students to work at their own pace or for group or class learning. Furthermore, the courses can be delivered completely online (that is, using a virtual approach) or can include both face-to-face and online components (that is, using a blended approach). Depending on the learner grouping and learning approach, instructors can choose to take advantage of peer-to-peer interaction through online discussions. Similarly, if students have prior knowledge of the concepts taught in certain lessons, instructors can decide to employ unit pretests to assess students’ prior knowledge and exempt them from taking the lessons. Note, however, that this feature is primarily designed for credit recovery purposes. For first-time credit, students are typically not allowed to “test out” of course lessons. Following are two common implementation models for using PLATO Courses, along with typical (but not definitive) implementation decisions.

- **Independent Learning**
 The student is taking the course online as a personal choice or as part of an alternative learning program.

<table>
<thead>
<tr>
<th>Learner grouping</th>
<th>independent learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning approach</td>
<td>blended or virtual</td>
</tr>
<tr>
<td>Discussions</td>
<td>remove from learning path</td>
</tr>
<tr>
<td>Unit pretests</td>
<td>students do not take pretests</td>
</tr>
</tbody>
</table>

- **Group or Class Learning**
 The online course is offered for a group of students. These students may not be able to schedule the specific course at their local school site, or they may simply want the experience of taking an online course.

<table>
<thead>
<tr>
<th>Learner grouping</th>
<th>group interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning approach</td>
<td>blended or virtual</td>
</tr>
<tr>
<td>Discussions</td>
<td>use; additional discussion</td>
</tr>
<tr>
<td></td>
<td>questions may be added</td>
</tr>
<tr>
<td>Unit pretests</td>
<td>students do not take pretests</td>
</tr>
</tbody>
</table>
Algebra 1A Overview

Course Structure
This is a one-semester course organized into units and lessons. The typical audience for this course is students at the high school level.

Pedagogical Approach
This course is designed to enable all students at the secondary level to develop a deep understanding of the algebra objectives identified in the course pacing guide detailed below. It is also based on the Common Core State Standards Initiative and on a modern understanding of student learning in mathematics and STEM disciplines.

In addition to content standards, the Common Core State Standards Initiative makes these key points about CCSS high school mathematics curricula:

- They include rigorous content and application of knowledge through high-order skills.
- They call on students to practice applying mathematical ways of thinking to real-world issues and challenges, preparing students to think and reason mathematically.
- They set a rigorous definition of college and career readiness by helping students develop a depth of understanding and ability to apply mathematics to novel situations, as college students and employees regularly do.
- They emphasize mathematical modeling and the use of mathematics and statistics to analyze empirical situations, to understand them better, and to improve decisions.

Lesson Activities and Unit Activities in this course exercise learning objectives that require ongoing attention throughout the student’s education. These global learning objectives are specifically called out at the beginning of each Lesson Activity. They are organized into four useful categories:

- **Mathematical Practices**—the eight Standards for Mathematical Practice identified by the Common Core State Standards Initiative
- **Inquiry**—skills associated with investigation, experimentation, analysis, drawing conclusions, and communicating effectively
- **STEM**—activities that combine mathematics and other technical disciplines or that provide insight into careers in science, technology, engineering, and math
- **21st Century Skills**—using online tools, applying creativity and innovation, using critical-thinking and problem-solving skills, communicating effectively, assessing and validating information, performing large-scale data analysis, and carrying out technology-assisted modeling

Online discussions employ some similar skills on an interesting problem, with the added advantage that they enable communication and collaboration among students. This is a critical aspect of the course, especially in fully online implementations, where peer-to-peer interaction may be limited.

Taken together, the elements of this course are designed to help students learn in a multifaceted but straightforward way. Finally, the curriculum is clearly relevant and highly engaging for students while being straightforward for teachers to manage.
Algebra IA Curriculum Contents and Pacing Guide

This course is divided into units and is designed to be completed in one semester. The Pacing Guide provides a general timeline for presenting each unit. This guide is adjustable to fit your class schedule. It is based on a typical 180-day school year schedule with 90 days per semester.

Unit 1: Relationships Between Quantities and Reasoning with Equations

Summary
This unit focuses on three CCSS domains that relate to expressions and equations:
- A.SSE: Seeing Structure in Expressions
- A.CED: Creating Equations
- A.REI: Reasoning with Equations and Inequalities

<table>
<thead>
<tr>
<th>Day</th>
<th>Activity/PLATO Objective</th>
<th>Common Core State Standard</th>
<th>Type</th>
</tr>
</thead>
</table>
| 1 day: 1 | Syllabus and Plato Student Orientation
Review the Plato Student Orientation and Course Syllabus at the beginning of this course. | | Course Orientation |
| 4 days: 2–5 | Adding Monomials
Add monomials.
Subtracting Monomials
Subtract monomials.
Multiplying Monomials
Multiply monomials.
Dividing Monomials
Divide monomials. | A.SSE.1 Interpret expressions that represent a quantity in terms of its context.
a. Interpret parts of an expression, such as terms, factors, and coefficients. | Lessons |
| 4 days: 6–9 | **Adding Binomials and Monomials**
Add binomials.
Subtracting Binomials and Monomials
Subtract binomials.
Multiplying Monomials and Binomials
Multiply binomials.
Dividing Binomials by Monomials
Divide binomials. | **A.SSE.1** Interpret expressions that represent a quantity in terms of its context.
b. Interpret complicated expressions by viewing one or more of their parts as a single entity. | Lessons |
| 11 days: 10–20 | **Linear Equations in 1 Variable: Isolating the Variable**
Solve more difficult linear equations by isolating the variable.
Linear Inequalities in 1 Variable, Part 1
Solve linear inequalities using addition and subtraction.
Linear Inequalities in 1 Variable, Part 2
Solve linear inequalities for which multiplication and division are required.
More Difficult Linear Inequalities in 1 Variable
Solve more difficult linear inequalities by isolating the variable.
Literal Equations
Write literal equations to solve math problems.
Adapting and Using Formulas
Rewrite formulas to solve problems with variables.
Using Linear Equations to Solve Problems
Use linear math sentences in one variable to solve practical problems. | **A.CED.1** Create equations and inequalities in one variable and use them to solve problems.
Include equations arising from linear and quadratic functions, and simple rational and exponential functions. | Lessons |
<table>
<thead>
<tr>
<th>Days</th>
<th>Topic</th>
<th>Description</th>
<th>Standard</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 days:</td>
<td>Ordered Pairs as Solutions of Linear Equations
Graphing Linear Equations in 2 Variables
Graphs, Slopes, and y-Intercepts
Finding x- and y-Intercepts of a Linear Equation
Equations, Graphs, Slopes, and y-Intercepts
Slope-Intercept Form
Point-Slope Form</td>
<td>Determine whether an ordered pair is a solution of a linear equation. Graph if a point is on the graph of a linear equation. Determine the slope and intercept of a linear relationship from its graph. Find the intercepts of a linear equation. Use the slope and intercept of linear functions to write an equation from a graph, and draw a graph from an equation. Apply the slope-intercept form of the equation of a line. Apply the point-slope form of the equation of a line.</td>
<td>A.CED.2</td>
<td>Lessons</td>
</tr>
<tr>
<td>1 day:</td>
<td>Solving Problems with Systems of Linear Equations</td>
<td>Solve practical problems with two variables.</td>
<td>A.CED.3</td>
<td>Lesson</td>
</tr>
<tr>
<td>1 day:</td>
<td>Review: Equations and Inequalities</td>
<td>Review how to solve equations and inequalities.</td>
<td>A.REI.3</td>
<td>Lesson</td>
</tr>
<tr>
<td>4 days:</td>
<td>Unit Activity and Discussion—Unit 1</td>
<td></td>
<td>Unit Activity Discussion</td>
<td></td>
</tr>
<tr>
<td>1 day:</td>
<td>Posttest—Unit 1</td>
<td></td>
<td>Assessment</td>
<td></td>
</tr>
</tbody>
</table>
Unit 2: Linear and Exponential Relationships

Summary
This unit focuses on four CCSS domains as they relate to quadratic relationships:

- N.RN: The Real Number System
- A.REI: Reasoning with Equations and Inequalities
- F.IF: Interpreting Functions
- F.BF: Building Functions

<table>
<thead>
<tr>
<th>Day</th>
<th>Activity / PLATO Objective</th>
<th>Common Core State Standard</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 day:</td>
<td>Interpreting Graphs to Solve Problems</td>
<td>F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.</td>
<td>Lesson</td>
</tr>
<tr>
<td>40</td>
<td>Solve problems or answer questions based on linear graphs that represent real-world situations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 days:</td>
<td>Graphing Linear Inequalities in Two Variables</td>
<td>A.REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.</td>
<td>Lesson</td>
</tr>
<tr>
<td>41–42</td>
<td>Graph linear inequalities in two variables.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 day:</td>
<td>Solving and Graphing Systems of Equations</td>
<td>A.REI.11 Explain why the x-coordinates of the points where the graphs of the equations (y = f(x)) and (y = g(x)) intersect are the solutions of the equation (f(x) = g(x)); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where (f(x)) and/or (g(x)) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.</td>
<td>Lesson</td>
</tr>
<tr>
<td>43</td>
<td>Solve a system of linear equations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days</td>
<td>Topic</td>
<td>Standard</td>
<td>Lesson</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>2 days:</td>
<td>Solving Systems of Linear Inequalities by Graphing</td>
<td>A.REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.</td>
<td></td>
</tr>
<tr>
<td>44–45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 day:</td>
<td>Patterns and Sequences</td>
<td>F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n + 1) = f(n) + f(n - 1)$ for $n \geq 1$.</td>
<td>Lesson</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 day:</td>
<td>Functions</td>
<td>F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.</td>
<td>Lesson</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 days:</td>
<td>Finding the Domain and Range of a Function</td>
<td>F.IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y = f(x)$.</td>
<td>Lesson</td>
</tr>
<tr>
<td>48–49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 day:</td>
<td>Describing Functions with Equations, Tables, and Graphs</td>
<td>F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.</td>
<td>Lesson</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 days:</td>
<td>Integer Exponents and the Product Rule</td>
<td>N.RN.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.</td>
<td>Lessons</td>
</tr>
<tr>
<td>51–55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Integer Exponents and the Quotient Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Divide exponential forms with the same base using the quotient rule for exponents.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 7 days: 56–62 | **Solving Linear Systems Using Substitution**
Solve linear equations using the substitution method.
Solving Linear Systems Using Linear Combinations
Solve systems of linear equations using the linear combinations method.
Solving Linear Systems of Equations: Addition
Solve a system of equations by adding or subtracting. | **A.REI.5** Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions. | Lessons |
| 1 day: 63 | **Solving Problems with Linear Systems**
Solve word problems using a system of two linear equations or inequalities. | **A.REI.6** Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. | Lesson |
| 1 day: 64 | **Rationalizing the Denominator in Rational Expressions**
Rationalize the denominator in rational expressions using the rules for exponents. | **N.RN.1** Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. | Lesson |
| 1 day: 65 | **Defining a Function with Its Rule**
Determine whether a relation represents a function. | **F.IF.2** Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. | Lesson |
| 2 days: 66–67 | **Equations and Graphs of Functions, Part 1**
Determine if a graph represents a function.
Equations and Graphs of Functions, Part 2
Determine if a graph represents a function. | **F.LE.3** Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. | Lesson |
| 8 days: 68–75 | **Solving Problems with Linear Functions**
Describe real-world situations as linear functions.
Solving Problems with Quadratic Functions
Describe real-world situations as quadratic functions.
Exponential Growth
Solve problems that involve exponential growth.
Exponential Decay
Solve problems that involve exponential decay. | **F.LE.1** Distinguish between situations that can be modeled with linear functions and with exponential functions.
a. Prove that linear functions grow by equal differences over equal intervals; and that exponential functions grow by equal factors over equal intervals.
b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another. | Lesson |
|---|---|---|---|
| 2 days: 76–77 | **Introduction to Sequences and Series**
Use and write sequences and series and find the sum of a series. | **F.IF.3** Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by \(f(0) = f(1) = 1, f(n + 1) = f(n) + f(n - 1) \) for \(n \geq 1 \). | Lesson |
| 4 days: 78–81 | **Arithmetic Sequences and Series**
Write rules for arithmetic sequences and find sums of arithmetic series.
Geometric Sequences and Series
Learn to write rules for geometric sequences and find sums of geometric series. | **F.BF.2** Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. | Lessons |
| 1 day: 82 | **Translations and Transformations**
Alter a function by translating and transforming the graph. | **F.BF.3** Identify the effect on the graph of replacing \(f(x) \) by \(f(x) + k, k f(x), f(kx), \) and \(f(x + k) \) for specific values of \(k \) (both positive and negative); find the value of \(k \) given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. | Lesson |
| 5 days: 83–87 | **Unit Activity and Discussion—Unit 2** | Unit Activity Discussion |
| 1 day: 88 | **Posttest—Unit 2** | Assessment |
| 1 day: 89 | **Semester Review** | |
| 1 day: 90 | **End-of-Semester Exam** | Assessment |